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ABSTRACT

A typical surround-view system consists of four fisheye cam-

eras. By performing an offline calibration that determines

both the intrinsics and extrinsics of the system, surround-view

images can be synthesized at runtime. However, poses of cal-

ibrated cameras sometimes may change. In such a case, if

cameras’ extrinsics are not updated accordingly, observable

geometric misalignment will appear in surround-views. Most

existing solutions to this problem resort to re-calibration,

which is quite cumbersome. Thus, how to correct cameras’

extrinsics in an online manner without using re-calibration

is still an open issue. In this paper, we attempt to propose

a novel solution to this problem and the proposed solution is

referred to as “Online Extrinsics Correction for the Surround-
view system”, OECS for short. We first design a Bi-Camera

error model, measuring the photometric discrepancy between

two corresponding pixels on images captured by two adja-

cent cameras. Then, by minimizing the system’s overall Bi-

Camera error, cameras’ extrinsics can be optimized and the

optimization is conducted within a sparse direct framework.

The efficacy and efficiency of OECS are validated by exper-

iments. Data and source code used in this work are pub-

licly available at https://z619850002.github.io/
OECS_HomePage/.

Index Terms— Online extrinsics correction, sparse direct

method, surround-view system, bird’s-eye view

1. INTRODUCTION

The surround-view system (SVS), which provides a top-down

view to drivers, is currently an integral part of modern vehi-

cles. In addition to provide a broader view to the driver, the

surround-view image generated by the system is also the ba-

sis of multiple computer vision tasks in autonomous driving,

such as parking slot detection [1] and pedestrian detection [2].

With the current offline calibration methods, accurate extrin-

sics can be obtained, which can guarantee that the generated

surround-view images are seamless.

∗Corresponding authors: {cslinzhang, yingshen}@tongji.edu.cn.

After the surround-view system is calibrated, cameras are

supposed to be fixed to keep their relative poses unchanged.

However, due to some reasons (collisions, bumps, or tire

pressure changes), cameras’ poses may actually change af-

terwards. If we do not update the representation of extrin-

sics accordingly, there will be observable misalignment in the

synthesized surround-views. Many automobile manufactur-

ers now are looking for online methods to correct the sys-

tem’s extrinsics. Unfortunately, existing studies on cameras’

extrinsics online correction are primarily designed for com-

mon multi-camera systems (such as the binocular system) and

they cannot be readily adapted to the surround-view case. In

this paper, we attempt to solve this problem and proposed a

highly effective and efficient solution, namely “OECS”.

2. RELATED WORK AND OUR CONTRIBUTIONS

The SVS is a special kind of multi-camera system. A multi-

camera system is composed of several cameras and provides

a wider view than the monocular one. For most multi-camera

systems, apart from their intrinsics, their extrinsics are also

need to be calibrated to get the relative poses among member

cameras.

When one or more cameras move after calibration, the ex-

trinsics of the multi-camera system will definitely change and

we need to correct them. Existing online extrinsics correction

schemes for the multi-camera systems roughly fall into two

categories, online re-calibration and online optimization.

Online Re-calibration. In online re-calibration approaches,

original offline calibration information will be abandoned and

extrinsics are re-calibrated based on natural scene features

without using auxiliary tools or special calibration sites. In

[3], Hold et al. proposed a method of online extrinsics cali-

bration for the binocular system. They adopted a conventional

detector to detect the lane and sampled a series of feature

points with a scanning line. By fast fourier transform (FFT)

they measured the distance between lane points and finally,

they solved the cameras’ extrinsics based on lane points. In

[4], Hansen et al.’s approach was based on a sequence of

frames. They resorted to sparse feature matching to improve
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the algorithm’s efficiency and used a sequence of frames to

weaken the effect of noise. The method proposed in [5] relies

on the localization results from a visual odometry, which is

actually a complicated task itself.

Online re-calibration methods are simple and straightfor-

ward. However, prior information inherited from offline cal-

ibration will be totally abandoned in such methods and thus

generally they cannot achieve high calibration accuracy.

Online Optimization. The key idea of online optimization

approaches is to take the offline calibration results as prior

knowledge, and then fine-tunes the cameras’ extrinsics to ob-

tain preciser parameters when cameras move. Ling and Shen

[6] detect feature points and matched them between adjacent

cameras. During optimization, the starting point is the offline

calibration result and the epipolar error is minimized by non-

linear optimization. Knorr et al. [7] established a recursive

optimization algorithm. Relative camera poses are corrected

by the Extended Kalman Filter and the relationship between

the multi-camera system and the ground is re-calculated by

homography estimation. The solution proposed in [8] relies

on two parallel lanes on the flat ground. The relative pose be-

tween the camera system’s coordinate system and the world

coordinate system is obtained through vanishing point deriva-

tion. It’s worth mentioning that in [8] the authors considered

the cameras system as a whole and thus poses among cameras

were not optimized. In [9], Liu et al. studied the online extrin-

sics optimization problem for the surround-view system and

their work is quite relevant to this paper. They proposed two

models, the Ground model and the Ground-Camera model,

and both of them can correct extrinsics by minimizing the

system’s photometric errors of overlapping areas.

Our motivations and contributions. How to correct cam-

eras’ extrinsics of a surround-view system in an online man-

ner is an emerging problem in ADAS. Unfortunately, relevant

studies in this area are quite rare. Most of the existing stud-

ies on online extrinsics correction focus on common multi-

camera systems and they cannot be straightforwardly adapted

to the surround-view case. To our knowledge, Liu et al.’s
work is the only solution specially designed to cope with such

a problem. But its correction accuracy, robustness, and com-

putational complexity are still not satisfactory. To this end,

our paper investigates this practical problem and the contri-

butions are summarized as follows:

• We propose a new error model namely “Bi-Camera er-

ror”, which can measure the photometric discrepancy

between two corresponding pixels pi and pj on two

images, where pi and pj are the projections from the

same physical point pG on the ground plane. Cam-

eras’ extrinsics are embedded in the projection relation-

ships between pG and pi (or pj). Thus, by minimizing

the Bi-Camera errors, optimal extrinsics can be worked

out.

• Based on Bi-Camera error model, an online extrin-

sics correction algorithm for the surround-view system,

namely (Online Extrinsic Correction for the Surround-
view system) (OECS for short), is proposed. In OECS,

cameras’ optimal extrinsics are figured out by itera-

tively minimizing the system’s overall Bi-Camera er-

ror. It needs to be noted that OECS follows a sparse

direct framework, implying that it does not depend on

visual feature points. Hence, OECS requires less on its

working conditions and is quite robust.

• Within the sparse direct framework, a novel pixel selec-

tion strategy is proposed. Using such a selection strat-

egy based on color matching and gradient screening,

noise and unmatched objects between images captured

by adjacent cameras can be eliminated effectively. Bi-

Camera errors are then only computed on the selected

positions. Such a pixel selection scheme can effectively

improve OECS’s speed and robustness.

3. METHOD

In this section, details of OECS are presented. The definition

of Bi-Camera error model will be given first. Then, details

of minimizing the system’s Bi-Camera error are presented.

Finally, we will introduce the pixel selection strategy adopted

by OECS.

3.1. Bi-Camera error

Fig. 1. Illustration of the Bi-Camera error.

Suppose that an SVS is composed of four fisheye cam-

eras, C1, C2, C3 and C4. For a camera Ci, the mapping rela-

tionship between a point pG on the surround-view image and

a corresponding point pCi
on the undistorted image is given

by,

pCi
=

1

ZCi

KCi
TCiGK

−1
G pG (1)

where KCi is the intrinsic matrix of Ci, TCiG is the pose of

camera Ci with respect to the ground coordinate system, and

ZCi
is the depth of pG in Ci’s coordinate system. KG is the
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transformation matrix from the ground coordinate system to

the surround-view coordinate system, which is given by,

KG =

⎡
⎢⎣

1
dXG

0 0 W
2dXG

0 − 1
dYG

0 H
2dYG

0 0 0 1

⎤
⎥⎦ (2)

where (dXG
, dYG

) stands for the size of the physical area on

the ground plane corresponding to each pixel of the surround-

view image, and W and H are the width and height of the

surround-view, respectively. Actually, pG is the projection of

a 3D point PG = [XG, YG, ZG, 1]
T

on the ground and they

can be linked via KG as,

pG = KGPG (3)

So Eq. 1 can be reformulated as,

pCi
=

1

ZCi

KCi
TCiGPG (4)

If pG can be seen by both Ci and Cj , its two projections

pCi
and pCj

on the undistorted images ICi and ICj captured

by Ci and Cj can be obtained using Eq. 1. For pG, we define

its Bi-Camera error term as,

εpG
=

1

2
‖ICi

(
pCi

)− ICj

(
pCj

)
‖22 (5)

Fig. 1 illustrates the Bi-Camera error term for a single point

pG. For each of the qualified points chosen by the pixel se-

lection strategy, which will be discussed in Sect. 3.3, such

an error term can be built. By summing all the error terms

together, we get the system’s overall Bi-Camera error εB ,

εB =
∑

(i,j)∈A

∑
pG∈N ij

εpG
(6)

where A is the set of all adjacent camera pairs and N ij is the

set of qualified points in the common-view region of Ci and

Cj . The four common-view regions are shown in Fig. 2.

Since pCi
and pCj

are imaging points of the same phys-

ical object, εpG
should be equal to zero ideally. Similarly,

if the system’s extrinsics are estimated precisely (and all the

other conditions are ideal), εB should be zero. Thus, in

OECS, εB is taken as the objective to be minimized to find

the optimal extrinsics.

3.2. Optimization

For optimization, the camera pose TCiG is expressed in its

Lie algebra form ξ∧CiG [10] and thus Eq. 5 can be reformu-

lated as,

εpG
=

1

2
‖ICi

(
1

ZCi

KCi exp
(
ξ∧CiG

)
K−1

G pG

)

− ICj

(
1

ZCj

KCj
exp

(
ξ∧CjG

)
K−1

G pG

)
‖22

(7)

Fig. 2. The surround-view image and common-view regions.

There are 4 common-view regions marked on the figure as the

Roman numericals I, II, III and IV.

Thus, for camera Ci, its optimal pose ξ∗CiG is given by,

ξ∗CiG = argmin
ξCiG

∑
(i,j)∈A

∑
pG∈Nij

εpG
(8)

To optimize the objective function Eq. 8, the derivative

relationship between εpG
and ξCiG needs to be determined.

The Jacobian of εpG
to ξCiG can be expressed as,

J i =
∂εpG

∂ξTGCi

(9)

Eq. 9 can be decomposed to four parts with the chain rule,

J i =
∂εpG

∂ICi

· ∂ICi

∂pT
Ci

· ∂pCi

∂P T
Ci

· ∂PCi

∂ξTCiG

(10)

Now we will discuss these four parts one by one:

(1) ∂εpG
/∂ICi

is the derivative of the error εpG
to pixel

intensities of image ICi . We use δ to denote it,

δ =
∂εpG

∂ICi

= ICi
(pCi

)− ICj
(pCj

) (11)

Obviously, this term is the intensity value difference between

two points on the undistorted fisheye images corresponding to

pG. It’s of large amount of computation for projecting pG and

calculating this difference one by one. Therefore, we use the

difference of corresponding pixels on bird’s-eye view images

to substitute it,

δ = IGCi
(pG)− IGCj

(pG) (12)

where IGCi
and IGCj

are bird’s-eye view images generated

from ICi
and ICj

, respectively.

(2) ∂ICi
/∂pT

Ci
is the intensity gradient of image ICi

at

the pixel pCi
,

∂ICi

∂pT
Ci

=
[

∂ICi

∂uCi

∂ICi

∂vCi

]
Δ
=

[ ∇IuG

Ci
∇IvG

Ci

]
(13)
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(3) ∂pCi
/∂P T

Ci
is the derivative of a pixel’s 2D coordi-

nate to its 3D position in the camera coordinate. From the

pin-hole camera model, we have

∂pCi

∂P T
Ci

=

⎡
⎣ fi

x

ZCi
0 − fi

xXCi

Z2
Ci

0
fi
y

ZCi
− fi

yYCi

Z2
Ci

⎤
⎦ (14)

where f i
x and f i

y are focal lengths of Ci. XCi
, YCi

and ZCi

are the coordinate values of PCi
in Ci’s coordinate system,

which can be obtained by,

PCi
= TCiGK

−1
G pG (15)

(4) ∂PCi
/∂ξTCiG is the derivative of the 3D point PCi

to

the camera pose ξCiG,

∂PCi

∂ξTCiG

=
[
I3×3 −P∧

Ci

]
(16)

where I is a 3 × 3 identity matrix and P∧
Ci

is the 3 × 3 anti-

symmetric matrix generated from PCi .
By merging the four terms in Eqs. 13∼16, we get the final

form of Jacobian J i,

Ji = δ
[

∇I
uG
Ci

∇I
vG
Ci

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fi
x

ZCi
0

0
fi
y

ZCi

− fi
xXCi
Z2
Ci

− fi
yYCi
Z2
Ci

− fi
xXCi

YCi
Z2
Ci

−fi
y −

fi
yY 2

Ci
Z2
Ci

fi
x +

fi
xX2

Ci
Z2
Ci

fi
yXCi

YCi
Z2
Ci

− fi
xYCi
ZCi

fi
yXCi
ZCi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(17)

Once J i is available, Eq. 8 can be iteratively optimized with

proper optimization methods [11, 12, 13, 14].

3.3. Pixel selection

In consideration of the robustness and the computational

speed, OECS follows a sparse direct framework [15]. In other

words, only points that meet certain conditions are selected

and involved in the Bi-Camera error computation.

Take two adjacent cameras Ci and Cj as an example. Pri-

marily, the pixels we select should be in the common-view

region of Ci and Cj , which can be represented as Oij . A

set of pixels N ij will be selected out by the selection strat-

egy and involved in optimization. Every pixel p in N ij must

satisfy the following three criteria:

• p must lie in the common-view region Oij ,

p ∈ Oij (18)

• The color discrepancy between IGCi
(p) and IGCj

(p)
is not allowed to be too large. Let Ic

GCi
and Ic

GCj
be

the channel map of IGCi
and IGCj

of channel c, re-

spectively. The color ratio rc (p) is defined as,

rc (p) =
Ic
GCi

(p)

Ic
GCj

(p)
(19)

We use the standard deviation of p’s color ratios in dif-

ferent channels as the measurement of its color discrep-

ancy,

Dcolor (p) =

√∑nc

c=1 (rc (p)− rμ (p))
2

nc
(20)

where nc is the number of channels (normally 3) and rμ
is the average of all p’s color ratios. For any p ∈ N ij ,

it must satisfy

Dcolor (p) < Dmean − 2σd (21)

where Dmean is the average color discrepancy of all the

points in Oij and σd is the associated standard devia-

tion.

• p’s intensity gradient modulus Gi (p) should be large

enough,

Gi(p) > Gmean + 2σg (22)

where Gmean is the mean intensity gradient modulus

over Oij and σg is the associated standard deviation.

Fig. 3. The photometric error maps of the surround-view im-

age in different ROIs at various iterations. From the first row

to the last row, they are photometric error maps of the ROI I,

II, III, and IV marked in Fig. 2, respectively. For each col-

umn, it shows error maps obtained after a particular number

of optimization iterations.
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Fig. 4. Comparison of the surround-view images before and after extrinsics correction by OECS in various environments. For

each pair, the upper left image is generated with disturbed extrinsics while the lower left one is the result after optimization.

Enlarged local areas are shown on the right.

4. EXPERIMENTAL RESULTS

4.1. Experiment setup

To validate the performance of OECS, we performed exper-

iments on an electric car equipped with an SVS. OECS was

implemented with standard C++ and tested on a general lap-

top with an Intel (R) Core (TM) i5-7300HQ CPU.

4.2. Qualitative evaluation

Traits of Methods. As we have reviewed in Sect. 2, there are

several studies in the literature that are relevant to our work

in this paper. In order to understand the different character-

istics of these methods more clearly, in Table 1 we compare

them from three aspects: 1) Does it reuse the prior informa-

tion from the offline calibration? 2) Can it be readily used

for the surround-view system? and 3) What kind of features

does it rely on? It can be seen that only Liu et al.’s method

and OECS are applicable to the surround-view system. One

of the significant differences between Liu et al.’s method and

OECS is that the former depends on dense pixels while the

latter relies on sparse pixels, implying that the latter one will

have the potential to be more robust and more efficient.

Table 1. Qualitative comparison with related methods

method prior SVS feature type

Hold et al. [3] × × ground lane

Hansen et al. [4] × × feature point

Schneider et al. [5] × × odometry

Ling and Shen [6]
√ × feature point

Knorr et al. [7]
√ × feature point

Edevschi et al. [8]
√ × feature point

Liu et al. [9]
√ √

dense pixels

OECS
√ √

sparse pixels

Fig. 5. Photometric errors of frames in SVS videos synthe-

sized from the same four fisheye videos using different ex-

trinsics.

Correction on A Single Image. To qualitatively validate

OECS, we chose a sample and observed how the optimiza-

tion process evolved. Fig. 3 shows the evolutions of Bi-

Camera error maps in the common-view regions of adjacent

cameras during optimization. It can be seen that the geometric

misalignment existing in neighboring bird’s-eye-view images

was gradually eliminated, which qualitatively demonstrates

the effectiveness of OECS.

Robustness. We tested OECS under a variety of different en-

vironmental conditions. The results show that, in most cases,

OECS can accurately correct the camera system’s extrinsics.

It implies that OCES has lower requirements for external en-

vironments, and thus has good usability and strong robust-

ness. Three typical examples are shown in Fig. 4.

4.3. Quantitative evaluation

To the best of our knowledge, Liu et al.’s work is the only

publicly available solution to solve the problem of online

extrinsics correction for the surround-view systems. Thus,

for quantitative evaluation, we compared OECS with the two

models, the Ground Model and the Ground-Camera Model,
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proposed in Liu et al.’s work.

Minimizing Photometric Error. In this experiment, we first

collected 100 groups of images from the SVS. For all groups,

cameras’ poses were changed slightly from the state of initial

offline calibration. For each group, we then tried to optimize

the system’s extrinsics using compared methods. For each

examined approach, its average photometric errors over 100

groups at sampled iterations are summarized in Table 2. Ob-

viously, OECS performs best.

Table 2. Comparison of photometric errors by examined ap-

proaches

Method iter = 0 iter = 10 iter = 20 iter = 50

Ground Model 10762.06 10748.62 10748.78 10748.49

Ground-Camera Model 10762.06 10731.35 10730.60 10671.34

OECS 10762.06 10552.65 10466.46 10345.96

Table 3. Average photometric errors of a video with different

extrinsics

Ground Model G-C Model OECS Non-optimization

12171.24 11382.36 11115.61 11976.49

Long-term Performance. In this experiment, we used dif-

ferent methods to correct the extrinsics by one frame and

then recorded the photometric errors in the following 350

frames. The results are summarized in Fig. 5 and Table

3. From the results, it can be found that both the Ground-

Camera Model and OECS can effectively correct the system’s

extrinsics, making the photometric errors greatly reduced, and

OECS can achieve more accurate correction results. By con-

trast, the Ground Model performs much poorer.

Time Cost. Both OECS and the Ground Model takes only

about 2s to finish the correction, and their speed is tenfold to

the Ground-Camera Model. However, it needs to be noted

that for the task of online extrinsics correction, the Ground

Model is much inferior to OECS.

5. CONCLUSIONS

In this paper, we studied a practical problem, online cor-

rection of cameras’ extrinsics for the surround-view system,

emerging from the field of ADAS, and proposed a solution

namely OECS. With OECS, by minimizing the system’s over-

all Bi-Camera error, cameras’ extrinsics can be optimized.

One eminent feature of the proposed solution is that it fully

exploits the prior information inherited from the offline cali-

bration. Experimental results have corroborated OECS’s su-

periority over the state-of-the-art competitors in this area.
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